Isolation of Novel Saquayamycins as Inhibitors of Farnesyl-protein Transferase

Ryuichi Sekizawa[†], Hironobu Iinuma^{††}, Hiroshi Naganawa^{††}, Masa Hamada^{††}, Tomio Takeuchi^{††}, Jiro Yamaizumi^{†††} and Kazuo Umezawa^{†,*}

[†]Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan ^{††}Institute of Microbial Chemistry
3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan ^{†††}National Cancer Center Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo 104, Japan

(Received for publication December 13, 1995)

All *ras* proteins require membrane localization for their functions through the C-terminal farnesyl group¹), and farnesyl-protein transferase (FPTase) inhibitors would thus be expected to suppress the *ras* functions selectively by inhibiting their posttranslational modifications^{2~4}). Therefore, we screened microbial culture broths for FPTase inhibitors, and isolated two novel

compounds belonging to the saquayamycin group, and named them saquayamycins E and F, as they are closely related to saquayamycins A and C.

For the production of saquayamycin E and F, growth of the Actinomycetes strain MK290-AF1 on an agar slant were inoculated into 500-ml Erlenmeyer flasks containing 110 ml of medium consisted of glycerol 2.5%, meat extract 0.5%, peptone 0.5%, yeast extract 1.0%, NaCl 0.2%, MgSO₄·7H₂O 0.05%, K₂HPO₄ 0.05%, and CaCO₃ 0.32%, pH 7.4. The fermentation was carried out for four days at 27°C on a rotary shaker (180 rpm). After filtration, 4.0 liters of filtered broth was extracted with the same volume of BuOAc, and the extract was concentrated to dryness to give 826 mg of the crude material. The active compound was applied to a silica gel column and eluted with CHCl₃. Further purification of the active compound (65 mg) was carried out by HPLC using a Capcell Pak C_{18} column (20 × 250 mm) with 50% CH₃CN to give 4.9 mg of saquayamycin E and 3.8 mg of saquayamycin F. Though some minor related compounds were contained in the broth, they were not identified.

Saquayamycins E and F were obtained as orange

Fig. 1. Structures of saquayamycins and aquayamycin.

	Saquayamycin E	Saquayamycin F
Appearance	Orange powder Orange powder	
Melting point	$150 \sim 153^{\circ}$ C (decomp.)	148~152°C (decomp.)
Optical rotation	$[\alpha]_{\rm p}^{23} - 11.5^{\circ} (c \ 0.2 \ {\rm CHCl}_3)$	$[\alpha]_{\rm D}^{25} - 120^{\circ} (c \ 0.2 \ {\rm CHCl}_3)$
Molecular formula	$C_{43}H_{50}O_{16}$	C43H50O16
FAB-MS (m/z)	$823 (M + H)^+$	$823 (M + H)^+$
HRFAB-MS (m/z)		
Calcd	845.2997	845.2997
Found	845.2999 (M+Na) ⁺	845.3019 (M + Na) ⁺
UV $\lambda_{max}^{MeOH-HCl}$ nm (log ε)	218 (4.45), 318 (3.66), 425 (3.76)	218 (4.49), 318 (3.66), 425 (3.76
IR v_{max} (cm ⁻¹) KBr	1728, 1699, 1639	1730, 1700, 1639
Retention time ^a (minute)	10.5	11.7

Table 1. Physico-chemical properties of saquayamycins E and F.

^a Capcell pak UG120, 4.6 mm i.d. \times 150 mm (Shiseido), CH₃CN - H₂O (20:80).

powders, and were soluble in MeOH, CHCl₃, and EtOAc, but insoluble in water or in *n*-hexane. The physicochemical properties of saquayamycin E and F are listed in Table 1. From The UV spectrum of these compounds, it was suggested that they have the same chromophore with saquayamycins or aquayamycin. The molecular formula of saquayamycin E was determined to be $C_{43}H_{50}O_{16}$ from HRMS and ¹³C NMR data, and that of saquayamycin F was the same with that of saquayamycin E. The ¹H and the ¹³C NMR data of saquayamycins E and F are shown in Table 2.

The ¹H and ¹³C NMR spectra indicated that the structures of these compounds are closely related to those of saquayamycins A and C (Fig. 1), reported by UCHIDA *et al.*⁵⁾. The structures of R_1 and R_2 residues of saquayamycins E and F are elucidated as shown in Fig. 1 by comparison of chemical shifts in the ¹H and the ¹³C NMR spectra with those of saquayamycins A and C.

Compared with those of saquayamycin A, the chemical shifts of C-2c" (28.4 ppm) and C-3c" (33.6 ppm) carbons in saquayamycin E indicated that they are aliphatic rather than olefinic carbons. These structures were supported by the HMBC and ¹H-¹H COSY spectra. Since longrange couplings between 1'-H (4.89 ppm) and C-8 (158.1 ppm) and between 10-H (7.88 ppm) and C-1' (71.1 ppm) were observed in the HMBC spectrum, the R_1 residue of saquayamycin E is suggested to be attached to the 9-position. And since long-range coupling between C-3 (82.5 ppm) and 1c'-H (5.27 ppm) was detected in the HMBC experiment and from the chemical shifts of C-3 (82.5 ppm), C-1c' (92.6 ppm), and 1c'-H (5.27 ppm), the R_2 residue of saquayamycin E is suggested to be attached to the 3-position through a glycosidic linkage. Thus we have elucidated the structure of saquayamycin E as shown in Fig. 1.

The HMBC data of saquayamycin F indicated ${}^{1}H{}^{-13}C$ long-range couplings between 1'-H (4.89 ppm) and C-8 (158.1 ppm) and between 10-H (7.88 ppm) and C-1' (71.1 ppm) as in saquayamycin E. Moreover, the long-range coupling between C-3 (82.5 ppm) and 1c'-H (5.26 ppm) indicated the R₂ residue was linked to the 3-posi-

tion through a glycosidic linkage. Compared with those of saquayamycin A, the chemical shifts of C-2" (28.1 ppm) and C-3" (33.4 ppm) indicated that they are aliphatic rather than olefinic carbons. Moreover, the hydrogenation of saquayamycin F was carried out in EtOAc - MeOH (1:1) with 6% Pd/BaSO₄ at room temperature for 15 minutes, and the product was purified by silica gel TLC with CHCl₃ - EtOAc - AcOH (10:10: 0.1). Then, the ¹H NMR data of this compound was completely identical with saquayamycin C⁵. Thus, the structure of saquayamycin F was elucidated and is also shown in Fig. 1.

FPTase activity was assayed with partially purified FPTase from bovine brain and purified human c-Ha-ras protein prepared in a bacterial expression system. For preparation of the enzyme, bovine brain (50 g) was homogenized at 4°C in 50 ml of a buffer containing 50 mм Tris-HCl (pH 7.5), 1 mм EDTA, 1 mм EGTA, 0.2 mм phenylmethylsulfonylfluoride (PMSF), and 0.1 mM leupeptin, and the homogenate was ultracentrifuged at $100,000 \times g$ for 60 minutes. Then, the supernatant was added with ammonium sulfate to 30% saturation. The supernatant was further added with ammunium sulfate to 50% saturation, then the precipitate was collected. The active fraction was dissolved in 20 ml of dialyzing buffer (20 mM Tris-HCl (pH 7.5), 1 mM dithiothreitol, $20 \,\mu M \, ZnCl_2$). The protein solution was dialyzed against 4 liters of the same buffer for 4 hours and then against another 4 liters for 15 hours. Human recombinant c-Ha-ras protein was produced in E. coli and purified as described before^{6,7)}.

The FPTase reaction was carried out as follows: For the FPTase reaction, the mixture containing 2μ l of enzyme preparation (17 mg protein/ml), 15 μ M c-Ha-*ras* protein, 0.2 μ Ci farnesylpyrophosphate (22.5 Ci/mmol, Du Pont/NEN Research Products), and 3 μ l of test sample solution in 30 μ l of reaction buffer (50 mM Tris-HCl (pH 7.5), 100 μ M ZnCl₂, 10 mM MgCl₂, 40 mM KCl and 1 mM PMSF) was incubated for 1 hour at 37°C. To stop the reaction, a 20- μ l amount of the reaction mixture was withdrawn and added to 50 μ l of 15% TCA

Position	Saq	uayamycin E	Saq	uayamycin F
1 0511011 -	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$
1	204.8		204.9	_
2	50.2	2.51 d, 3.18 dd	50.2	2.51 d; 3.18 dd
3	82.5	_	82.5	
3-CH ₃	25.5	1.41 s	25.5	1.41 s
4	44.6	1.84 d. 2.28 dd	44.6	1.84 d. 2.28 dd
4a	80.0		80.0	
4a-OH		4.35 s		4.32 s
5	145.6	6.45 d	145.5	6.45 d
6	117.5	6.92 d	117.5	6.92 d
6a	138.8	_	138.8	_
7	188.2	_	188.2	<u> </u>
7a	114.0		114.0	_
8	158.1		158.1	
8-OH	_	12.29 s		12.30 s
9	138.2		138.4	
10	133.6	7.88 d	133.6	7.88 d
11	119.7	7.62 d	119.7	7.62 d
11a	130.5		130.5	_
12	182.2	_	182.3	
12a	138.9	_	138.8	
12b	77.5	·	77.5	
12b-OH		4.59 s	_	4.59 s
1'	71.1	4.89 dd	71.1	4.89 dđ
2′	38.9	$1.39 \sim 1.45$ m.	38.8	$1.35 \sim 1.45$ m.
-	2012	2.57 ddd	2010	2.55 ddd
3′	71.3	3.91 m	71.2	3.86 m
3'-OH		4.26 d	_	4.52 d
4′	89.4	3.21 br dd	88.7	3.15 dd
5′	74.4	3.58 dq	74.5	3.57 dq
6'	18.4	1.39 d	18.3	1.38 d
1″	95.2	5.38 d	99.7	5.18 t
2″	142.1	6.84 dd	28.1	2.10 m,
				2.40~2.51 m
3″	127.3	6.15 d	33.4	2.40~2.57 m
4″	195.2	_	209.3	<u> </u>
5″	71.6	4.76 q	72.0	4.50 q
6″	15.2	1.45 d	14.8	1.36 d
1c'	92.6	5.27 br d	92.5	5.26 br d
2c'	24.8	2.04 m, 1.49 m	24.7	2.03 m, 1.49 m
3c'	24.7	1.88 m	24.6	1.87~1.93 m
4c′	74.7	3.66 br s	76.2	3.69 br s
5c'	67.2	4.22 da	67.0	4.25 dg
6c'	17.2	1.28 d	17.2	1.29 d
1c"	99.1	5.09 t	95.3	5.27 d
2c″	28.4	2.10 m, 2.36 m	143.1	6.89 dd
3c″	33.6	2.47 dt	127.3	6.10 d
4c″	211.0		196.8	_
5c″	71.1	4.29 g	70.7	4.54 q
6c″	14.9	1.27 d	15.2	1.37 d

Table 2. ¹³C (125 MHz) and ¹H (500 MHz) NMR data of saquayamycins E and F in CDCl₃.

Chemical shifts were determined in ppm based on TMS as an internal standard.

containing 2% SDS in a 96-well microplate, and the plate was incubated for 1 hour on ice. Then, the insoluble fraction was trapped on a filter paper and washed with 6% TCA in a cell harvester. The filter was dried and counted for the radioactivity by a Matrix 9600 beta counter (Packard). In this assay system, the tetrapeptide CVIM inhibited the reaction with an IC₅₀ of $1.0 \,\mu$ M.

Fig. 2. Inhibition of FPTase by saquayamycins E and F.

Partially purified bovine brain FPTase was incubated with c-Ha-*ras* protein and $[^{3}H]$ -farnesylpyrophosphate in the presence of saquayamycin E (\odot) or saquayamycin F (\bullet) for 60 minutes. Values are means of triplicate determinations.

Table 3. Inhibition of farnesyl-protein transferase by saquayamycins.

Compounds	IC ₅₀ (µм)		
Saquayamycin E	1.8		
Saquayamycin F	2.0		
Saquayamycin A	1.8		
Saquayamycin B	1.8		
Saquayamycin C	1.4		
Saquayamycin D	1.5		
Aquayamycin	1.3		
Adriamycin	> 60		
CVIM	1.0		

As shown in Fig. 2, saquayamycins E and F inhibited the FPTase from bovine brain with IC_{50} values of 1.8 and 2.0 μ M, respectively. Several related compounds such as saquayamycins A, B, C, D or aquayamycin⁸⁾ also inhibited the enzyme, whereas adriamycin had no inhibitory activity, as shown in Table 3. Kinetic analysis with Lineweaver-Burk plotting suggested that the saquayamycins non-competitively inhibit the enzyme with respect to *ras* proteins.

Acknowledgment

This work was partly supported by grants from the Ministry of Education, Science, and Culture of Japan.

References

- WILLUMSEN, B. M.; K. NORRIS, A. G. PAPAGEORGE, N. L. HUBBERT & D. R. LOWY: Harvey murine sarcoma virus p21^{ras} protein: biological and biochemical significance of the cysteine nearest the carboxyl terminus. EMBO J. 3: 2581~2585, 1984
- 2) CLARKE, S.; J. P. VOGEL, R. J. DESCHENES & J. STOCK: Posttranslational modification of the Ha-ras oncogene protein: Evidence for a third class of protein carboxy

methyltransferases. Proc. Natl. Acad. Sci. U.S.A. 85: 4643~4647, 1988

- REISS, Y.; J. L. GOLDSTEIN, M. C. SEABRA, P. J. CASEY & M. S. BROWN: Inhibition of purified p21^{ras} farnesyl: protein transferase by Cys-AAX tetrapeptides. Cell 62: 81~88, 1990
- HANCOCK, J. F.; A. J. MAGEE, J. E. CHILDS & C. J. MARSHALL: All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57: 1167~1177, 1989
- 5) UCHIDA, T.; M. IMOTO, Y. WATANABE, K. MIURA, T. DOBASHI, N. MATSUDA, T. SAWA, H. NAGANAWA, M. HAMADA, T. TAKEUCHI & H. UMEZAWA: Saquayamycins, new aquayamycin-group antibiotics. J. Antibiotics 38:

1171~1181, 1985

- 6) MIURA, K.; Y. INOUE, H. NAKAMORI, S. IWAI, E. OHTSUKA, M. IKEHARA, S. NOGUCHI & S. NISHIMURA: Synthesis and expression of a synthetic gene for the activated human c-Ha-ras protein. Jpn. J. Cancer Res. (Gann) 77: 45~51, 1986
- 7) GIBBS, J. B.; I. S. SIGAL, M. POE & E. M. SCOLNICK: Instrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc. Natl. Acad. Sci. U.S.A. 81: 5704~5708, 1984
- SEZAKI, M.; S. KONDO, K. MAEDA, H. UMEZAWA & M. OHNO: The structure of aquayamycin. Tetrahedron 26: 5171~5190, 1970